CHAPTER 1.3 THE OPERATORS

Dr. Shady Yehia Elmashad

Outline

- **1. Arithmetic Operators**
- 2. Accumulation Operators
- 3. Incremental/ Decremental Operators
- 4. Equality/Relational Operators
- 5. Logical Operators
- 6. Confusing Equality (==) and Assignment (=) Operators

Operator	Symbol	Action	Example
Addition	+	Adds operands	x + y
Subtraction	-	Subs second from first	x - y
Negation	-	Negates operand	-X
Multiplication	*	Multiplies operands	x * y
Division	/	Divides first by second	x / y
		(integer quotient)	
Modulus	%	Remainder of divide op	х % у

Example

- float a = 31/3; a = 10.3
- float b = 31%3; b = 1.00
- int c = 31/3; c = 10
- int d = 31%3; d = 1

Example: What is the output?

```
#include<iostream.h>
void main()
{ float sum = 0;
cout<< " the value of sum is initially set to " <<
sum<<endl;
sum = sum + 98;
cout<<"sum is now: " << sum << endl ;
sum = sum - 70;
cout<<" sum is now: " << sum<< endl ;
sum = sum * 20 ;
cout<<"sum is now : " <<sum<<endl;</pre>
sum = sum / 6;
cout<<"sum is now:"<<sum<<endl;
sum=sum%3;
cout<<"sum is now:"<<sum<<endl;
```


Operator precedence

- Some arithmetic operators act before others (i.e., multiplication before addition)
 > Be sure to use parenthesis when needed
- Example:

Find the average of three variables a, b and c \rightarrow Do not use: a + b + c / 3 \rightarrow Use: (a + b + c) / 3

Operator precedence

• Rules of operator precedence:

Operator(s)	Operation(s)	Order of evaluation (precedence)	
()	Parentheses	Parentheses Evaluated first. If the parentheses are nested, the expression in the innermost pair is evaluated first. If there are several pairs of parentheses "on the same level" (i.e., not nested), they are evaluated left to right.	
*, /, or %	Multiplication Division Modulus	Evaluated second. If there are several, they are evaluated left to right.	
+ or -	Addition Subtraction	Evaluated last. If there are several, they are evaluated left to right.	

Example: What is the output?

```
#include<iostream.h>
void main()
{
       float a, b, c, d;
       a = 8 + 2 * 3;
       b = (5 * 2 - 3) / 6;
       c = 5 * 2 - 3 / 6;
       d = 4 + 2 / 4 * 8;
cout << "a="<< a<<endl << "b="<<
b<<endl;
cout << "c="<< c<<endl << "d="<<
d<<endl;
```


Example: Calculate the average of three numbers

```
#include<iostream.h>
void main( )
 float avg, grade1, grade2, grade3;
 grade1 = 8.5; grade2 = 12.0; grade3 = 9.0;
 avg = grade1 + grade2 + grade3 / 3.0;
cout<<"the average is"
<<setprecision(1)<<avg;
avg = (grade1 + grade2 + grade3)/3.0;
```


2. Accumulation/Assignment Operators

Assignment expression abbreviations

c = c + 3; can be abbreviated as c += 3; using the addition assignment operator

Statements of the form
 variable = variable operator expression;
 can be rewritten as
 variable operator= expression;

2. Accumulation/Assignment Operators

Operator	Expression	Alternative
+ =	sum = sum + 10 ;	sum += 10 ;
- =	score = score – 22 ;	score – = 22 ;
* =	x = x * z;	x *= z;
/ =	x = x / y;	x /= y;
% =	x = x % y;	x %=y;

3. Incremental/ Decremental Operators

Operator	Expression	Alternative
Incremental	i = i +1	i++ 0r ++i
Decremental	i = i - 1	i Ori

3. Incremental/ Decremental Operators

- Preincrement
 - When the operator is used before the variable (++c or --c)
 - Variable is changed, then the expression it is in is evaluated.
- Posincrement
 - When the operator is used after the variable (c++ or c--)
 - Expression the variable is in executes, then the variable is changed.
- Example:

If c = 5, then

-cout << ++c; prints out 6 (c is changed before cout is executed)
-cout << c++; prints out 5 (cout is executed before the increment.
c now has the value of 6)</pre>

3. Incremental/ Decremental Operators

- When Variable is not in an expression
 - Preincrementing and postincrementing have the same effect.

++c; cout << c; and c++; cout << c;

have the same effect.

4. Equality/Relational Operators

Standard algebraic equality operator or relational operator	C++ equality or relational operator	Example of C++ condition	Meaning of C++ condition
Relational operators			
>	>	х > у	x is greater than y
<	<	х < у	x is less than y
\geq	>=	х >= у	x is greater than or equal to y
\leq	<=	х <= у	x is less than or equal to y
Equality operators			
=	==	х == у	x is equal to y
≠	!=	х != у	x is not equal to y

1	// Fig. 1.14: fig01_14.cpp				
2	<pre>// Using if statements, relational</pre>			Outline	
3	<pre>// operators, and equality operators</pre>		∇		
4	<pre>#include <iostream></iostream></pre>				
5			1.	Load <iostrea< th=""><th>am></th></iostrea<>	am>
6					
7	using std::cin; // program uses cin	Notice the using	statements.	2. ma	. :
8	<pre>using std::endl; // program uses endl</pre>				iin
9					
10	<pre>int main()</pre>		21	Initialize num1 a	and
11	f		2.1		_
12	<pre>int num1, num2;</pre>			nu	ım2
13				2.1.1 Input d	ata
14	cout << "Enter two integers, and I will tell you\n"			•	
15	<< "the relationships they satisfy: ";				
16	cin >> num1 >> num2; // read two integers	two integers	and T w	tateme	nts
17		_		****	
18	if (num1 == num2)				
19	cout << num1 << " is equal to " << num2 < tine ; re	lationships	they sati	sfy:	
20	3 7				
21	if (num1 != num2)	t	ruth of the co	ndition. If it is	
22	<pre>cout << num1 << " is not equal to " << num2 << endl;</pre>		ia not	tement is	
23			is not	equal to 7	
24	<pre>if (num1 < num2)</pre>		kipped.		
25	<pre>cout << num1 << " is less than " << num2 << endl;</pre>			Lastator Tonts	
26				th staten 7 ents	
27	<pre>if (num1 > num2)</pre>		-	neate them with	
28	<pre>cout << num1 << " is greater than " << num2 << endl;</pre>	k	oraces { }.		
29					
30	if ($num1 \le num2$)				
31	cout << numl << " is less than or equal to "	-		+hen en e	7
32	<< num2 << endl;		o is less	<u>than or eq</u>	ua
33				10	

34	if ($num1 \ge num2$)	Outline
35	cout << num1 << " is greater than or	
36	<< num2 << endl;	
37		2.3 exit (return 0)
38	<pre>return 0; // indicate that program ended</pre>	
39}		

Enter two integers, and I will tell you the relationships they satisfy: 3 7 3 is not equal to 7 3 is less than 7			
3 is less than or equal to 7			
Enter two integers, and I will tell you the relationships they satisfy: 22 12 22 is not equal to 12 22 is greater than 12			
22 is greater than or equal to 12			
Enter two integers, and I will tell you the relationships they satisfy: 7 7 7 is equal to 7 7 is less than or equal to 7 7 is greater than or equal to 7			
7 is greater than or equal to 7			

© 2000 Prentice Hall, Inc. All rights

Operator	Meaning	Example
&&	AND	lf(x > y && x<= 20)
	OR	lf(x>y x< 30)
!	NOT	lf(! x)

- && (logical AND)
 - Returns **true** if both conditions are **true**
- | | (logical OR)
 - Returns **true** if either of its conditions are **true**
- ! (logical **NOT**, logical negation)
 - Reverses the truth/falsity of its condition
 - Returns **true** when its condition is **false**
 - I-s a unary operator, only takes one condition
- Logical operators used as conditions in loops

Truth Tables

Example

- Given int i=3, k=5, j=0, m=-2;
- Evaluate:
- (0 < i) && (i < 5)</p>
- \circ (i > k) || (j < i)
- \circ ! (k > 0)
- \circ i+j < k
- (i < 0) && (j < 7)</p>
- (i < k) || (j < 7)</pre>
- \circ (m > k) || (j > 0)

 \circ 3*i - 4/k < 2

Example: What is the output?

- Given int i=4;
- Evaluate:

cout << (14+4*4 < 5*(4+3) - ++i);
 14+16 < 5*7 - ++i
 30 < 35 - 5</pre>

30 < 30

Short Circuiting

- C++ is very economical when evaluating Boolean expression.
- Therefore, if in the evaluation of a compound Boolean expression, the computer can determine the value of the whole expression without any further evaluation, it does so. This called short circuiting.

➢ (True || expression) ----- True➢ (False && expression) ----- False

Example:

Given: int A = 17, B = 65, C = 21, D = 19;

```
(13 < = A) || (A < = 19)
(D > = C) && (B > = C)
! (C < = B) && ! (D < = C)
```


6. Confusing Equality (==) and Assignment (=) Operators

- These errors are damaging because they do not ordinarily cause syntax errors.
 - Recall that any expression that produces a value can be used in control structures. Nonzero values are true, and zero values are false
- Example:

```
if ( payCode == 4 )
```

cout << "You get a bonus!" << endl;</pre>

- Checks the paycode, and if it is **4** then a bonus is awarded
- If == was replaced with =

if (payCode = 4)

cout << "You get a bonus!" << endl;</pre>

- Sets **paycode** to **4**
- 4 is nonzero, so the expression is true and a bonus is awarded, regardless of paycode.

6. Confusing Equality (==) and Assignment (=) Operators

Lvalues

Expressions that can appear on the left side of an equation Their values can be changed Variable names are a common example (as in x = 4;)

Rvalues

Expressions that can only appear on the right side of an equation Constants, such as numbers (i.e. you cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

